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Abstract

Background: Intracranial vessel wall MRI (IVWM) is a new diagnostic imaging approach with the goal of evaluating
intracranial vascular pathology by directly visualizing arterial vessel wall abnormalities with MR sequences, preferably
at 3 Tesla field strength, that suppress blood and have excellent spatial resolution.

Body: The differentiation of intracranial vascular pathology has historically relied on luminal imaging techniques that
depict the alteration of flow created by atherosclerotic stenosis or vasospasm. With IVWWM, it is possible to identify
distinct radiologic findings of the pathology within the intracranial vessel wall itself, ranging from arterial dissection to
vasculitis. Futhermore, IVWWM imaging characteristics, such as post-contrast enhancement, can elucidate the temporal
relationship between imaging findings and clinical pathology; and may predict future behavior of unruptured

aneurysms or atherosclerotic plaques.

Conclusion: We present a review of the basic VWM imaging techniques and the relevant published literature
on VWM, with a focus on evidence-based diagnostic indications for IVWM and discussion of the strengths and
weaknesses of each indication. Finally, we discuss how VWM can be used to differentiate between intracranial

pathology and future directions for IVWM research.
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Background

Intracranial vessel wall MRI (IVWM) is a term for differ-
ent MRI sequences that share the common goal of
achieving sufficient resolution and contrast such that the
vessel wall and overlying tissue, such as atherosclerotic
plaque, can be accurately assessed; and to differentiate
between intracranial vascular pathologies that were
previously evaluated with luminal imaging. IVWM, as
compared to extracranial vessel wall imaging, is more
challenging due to the small caliber and tortuous course
of the intracranial arteries. For example, the middle
cerebral artery diameter can range from 3 to 5 mm, with
a vessel wall thickness from 0.5 to 0.7 mm [1]. While
some protocols have used 1.5T scanners, 3T is preferable
because of the need for very high resolution and small
voxels to accurately depict the normal arterial wall and
differentiate between pathological states.
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In addition, with decreased in-plane and through-plane
resolution, there is increased likelihood of volume aver-
aging and wall blurring [2]. Both 2D and 3D IVWM tech-
niques can be employed depending on the scanning
environment and institutional experience [2—13] (Table 1).
An important consideration for intracranial vessel wall im-
aging is blood and cerebrospinal fluid (CSF) suppression
for better outer wall boundary evaluation. For 2D vessel
wall imaging techniques, spin echo techniques will gener-
ate dark blood and are frequently used, but a major limita-
tion is that with slow or in-plane flow, blood suppression
will be lost. Multiplanar 2D techniques permit imaging in
a plane perpendicular to the axis of the interrogated artery,
allowing more complete visualization of the lesion morph-
ology, assessment of its effects on the lumen, minimization
of volume averaging effects and accurate estimation of wall
thickness. Vessel obliquity, slice thickness and in-plane
resolution are all factors that affect wall measurements and
the sharpness of the vessel wall borders [14]. Cardiac gat-
ing may be performed for 2D IVWM, but its benefit is de-
batable [2].
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Table 1 Common IVWM pulse sequences with advantages/disadvantages
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Pulse sequence

Advantages

Disadvantages

3D time of flight (TOF) MRA
(non-contrast)

2D turbo spin echo (TSE) or fast
spin echo (FSE)

3D variable refocusing flip angle
(VRFA) sequences (VISTA, Philips;
SPACE, Siemens; CUBE, GE)

Blood suppression prepulse:
- Double inversion-recovery

Blood suppression prepulse:
- Motion-sensitive driven
equilibrium (MSDE)

Blood suppression prepulse:
« Delay alternating with nutation
for tailored excitation (DANTE)

Gradient-echo 3D T1-weighted
without blood suppression

Flow-related enhancement allows identification of
luminal abnormality or aneurysm for measurement
and placement of VWM sequences

Wide availability, good in-plane resolution, flexible

tissue contrast, reduced sensitivity to magnetic field
inhomogeneities, high SNR, can image focused area
of interest in rapid acquisition to limit motion artifact

High SNR with excellent spatial resolution, superior
anatomic coverage, T1/T2/PD weightings available,
ability to reformat into multiplanar images that
allow viewing of vessel wall, plaque, or aneurysm
from any aspect. Shorter overall scan time

Available as a commercial pulse, negligible effect
on image contrast weighting

3D blood suppression technique, robust to large
slab size acquisition, in-flow/outflow independent

Best blood suppression, robust to large slab size
acquisition, in-flow/outflow independent, no loss
of T2 signal, performs well at 7T, available on
research sequences from most vendors

Can identify intraplaque hemorrhage in atherosclerosis,
intramural hematoma in dissection, and aneurysmal

Luminal imaging alone may not identify non-stenotic
vessel abnormalities (outwardly remodeling plaque,
non-stenotic dissection, etc.). TOF overestimates stenosis
secondary to flow dephasing artifact. It also shows diminished
flow in slow flow or in-plane flow states. These are overcome
with contrast-enhanced TOF MRA

Low spatial resolution in the slice-select direction leading
to partial volume effect that can hide subtle findings, poor
reproducibility, inability to create multiplanar reformats.
Requires multi-planar scanning which is time consuming

Requires research preparation prepulse sequence for blood
suppression, longer acquisition times for slab can result

in motion artifact, more susceptible to magnetic field
inhomogeneities

Blood-suppression difficult after contrast administration,
does not work with 3D techniques

Can lead to loss of signal with T2 weighting, inability to
implement 180° pulse due to high specific absorption
rate, B1 inhomogeneity

Longer imaging time than MSDE may create artifact from
vessel wall motion

Lack of blood suppression can hide pathologic findings,
unclear significance of intracranial intraplague hemorrhage.

(MP-RAGE, FLASH) wall hematoma

MP-RAGE is preferred sequence

3D acquisitions allow for improved through-plane
resolution and permit multi-planar reformations with
isotropic acquisitions. 3D variable refocusing flip angle
(VRFA) sequences (VISTA, Philips Healthcare, Best, the
Netherlands; SPACE, Siemens Healthcare, Erlangen,
Germany; CUBE, GE Healthcare, Milwaukee, W1, USA)
have been the most extensively studied 3D techniques to
date, as these sequences provide excellent image quality,
coverage and blood flow suppression in a shorter scan
time [3, 4, 15, 16]. VRFA techniques have been used
with T1 and proton density (PD) weightings, both before
and after gadolinium contrast administration, as the pat-
tern and degree of contrast enhancement can be helpful
in differentiating and characterizing vasculopathies [2, 5].
High-resolution 3D T2-weighted imaging has also shown
promise for helping further differentiate intracranial vessel
wall pathology [17].

The delay alternating with nutation for tailored excita-
tion (DANTE) pulse train, which is a series of low flip
angle nonselective pulses interleaved with gradient pulses
with short repetition times, results in optimized blood and
CSF suppression without effects on tissue contrast [10].
DANTE allows for improved vessel wall assessment with
3D VRFA techniques while also minimizing artifacts from
turbulent or slow flow. In addition to VRFA sequences,
another 3D technique that successfully suppresses blood
flow is motion sensitized driven equilibrium (MSDE),

which employs flow-sensitive dephasing gradients to sup-
press flow [18]. However, MSDE can result in T2 signal
decay and loss of signal.

IVWM protocols can be performed in a time efficient
manner. A 3D PD-weighted VRFA sequence (0.4—0.5 mm>
isotropic voxels) with coverage of the major intracranial
arteries can be performed on a 3T system in 7 to 11 min
[2]. Thus a full protocol, including TOF MRA for
localization and PD-weighted VRFA, pre and post con-
trast, can be performed in under 30 min. As MRI scanners
improve in efficiency, field strength, coil element technol-
ogy and compressed sensing techniques become more effi-
cient, sequences will further shorten with improved
coverage [19]. Currently, the majority of research has been
conducted using a 12- or 16-channel coil, although data
suggests that a 32-channel coil improves the ability to
detect pathology in the more peripheral vessels, and may
become more prevalent in the future [20].

Intracranial atherosclerosis (Fig. 1)

Compared to time-of-flight (TOF) MRA, which mea-
sures degree of stenosis, IVWM is able to characterize
multiple imaging features of intracranial plaque [21]
and has been more sensitive for the identification of
symptomatic atherosclerotic lesions [5]. IVWM is also
helpful to identify the morphology of intracranial ves-
sels at [22] or distal [23] to an arterial occlusion, lesions
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Fig. 1 All images were created with a 3T MRI and 16-channel head coil. a 3D axial T2-weighted image of atherosclerotic plaque (white arrow) at
the vertebrobasilar junction in a patient who presented with a transient ischemic attack. Note the juxtaluminal T2 hyperintensity, depicting
the fibrous cap. b 3D axial T1-weighted image post-contrast showing eccentric vessel wall enhancement, consistent with a recently symptomatic
atherosclerotic plague, and outward remodeling of the plague. ¢ Digital subtraction angiogram of the same patient in (a) and (b), showing a lateral
view of the atherosclerotic stenosis at the vertebrobasilar junction. d Diffusion-weighted image and apparent diffusion coefficient axial images of a
second patient who presented with left-sided weakness and was found to have an acute ischemic stroke in the right internal capsule (white arrows).
e TOF MRA shows minimal stenosis in the right M1 segment (white arrow) of the middle cerebral artery, at the origin of the lenticulostriate perforators
that supplied the distribution of the ischemic stroke. f Sagittal reconstruction of the same right M1 segment again demonstrates eccentric wall
enhancement, consistent with recently symptomatic atherosclerotic plaque, and outward remodeling at the site of the enhancement

that MRA and CTA do not visualize well. IVWM stud-  limiting intracranial lesions in ischemic stroke that would
ies of intracranial stenosis suggest that IVWM is more  normally be missed by standard luminal imaging [26].

accurate than MRA at measuring degree of luminal Compared to asymptomatic MCA atherosclerotic
stenosis, [24, 25] and can identify symptomatic non-flow-  plaques, recently symptomatic plaques are larger and
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irregularly surfaced with increased ratio of plaque
thickening to patent vessel lumen [27-32]. Among
MCA plaques with associated deep penetrating artery
infarctions, plaque tended to be more superior and less
ventral [28, 31]. Symptomatic MCA plaques typically have
positive remodeling, characterized by outward remodeling
of the stenotic vessel area [26, 28, 29, 33], an association
first demonstrated in coronary arterial atherosclerosis
[34, 35]. Several studies of pontine ischemic stroke
patients have shown that IVWM is more sensitive than
TOF MRA to the presence of symptomatic basilar artery
(BA) plaque, even in pontine lacunar infarctions, [36]
and more predictive of progressive motor deficit during
hospitalization [37].

Carotid artery plaque hemorrhage is considered a
risk factor of ischemic stroke [38-40]. Histopatho-
logical studies of carotid plaque have shown that intra-
plaque high-intensity signal on vessel wall imaging
techniques correlate well with the presence of intra-
plaque hemorrhage (IPH) [41]. These same principles
can be applied to intracranial plaques to both identify
the etiology of medium-to-large-vessel stroke and po-
tentially to stratify future risk of ischemic stroke due
to intracranial stenosis. For example, T1, T2 and PD
weighted IVWM hyperintensity was found to be more
common among symptomatic (57.1 %) vs. asymptom-
atic (22 %) MCA plaques [42], a finding which has
been replicated in several studies [43, 44]. In the pos-
terior circulation, a study of 73 patients with >50 %
BA stenosis found that IPH, detected on the non-
blood suppressed 3D magnetization-prepared rapid
gradient-echo (MP-RAGE) sequence, was associated
with a 1.64 relative risk of a focal stroke event on
DWTI (p < 0.01), with a sensitivity of 80.0 % and specifi-
city of 46.5 % [45].

Compared to MRA, IVWM permits the evaluation of
wall enhancement in intracranial arterial atherosclerosis
and the potential identification of sources of acute stroke
[12]. This was first demonstrated among 13 ischemic
stroke patients who received a 3T IVWM protocol that
was compared to CTA, MRA, or catheter angiogram.
12/13 (92.3 %) patients with symptomatic intracranial
atherosclerosis had focal areas of eccentric wall enhance-
ment in the relevant major branches of the circle of
Willis supplying the area of infarct and 10/12 (83.3 %)
had enhancement only in the vessel supplying the infarct
[46]. Another study followed acute stroke patients with
intracranial atherosclerotic stenosis with IVWM and
found strong vessel wall enhancement in all patients
imaged within 4 weeks of acute stroke and that the
strength and presence of enhancement decreased in the
subacute (4—12 weeks) and chronic (>12 weeks) phases
[47]. A recent study performed 3T IVWM on 138 patients
with symptomatic atherosclerotic plaque of varying degrees
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of stenosis (108/138 had plaque enhancement) and
followed the patients for a median of 18 months [48]
There were 39 stroke recurrences, of which 37/39 were
in patients with enhancing plaques, creating a hazard
ratio of 7.42 for recurrent stroke among the patients
with enhancing plaque.

Given that interobserver reliability for plaque morph-
ology, presence of intracranial IPH and enhancement
pattern on contrasted IVWM is excellent [49, 17], it
would appear that IVWM could reliably identify symp-
tomatic atherosclerosis. However, it is important to
consider that all IVWM findings are also seen in asymp-
tomatic atherosclerosis [4, 33, 45], suggesting that
IVWM findings such as plaque enhancement or IPH
could be useful for identifying symptomatic atheroscler-
otic plaque, but only in combination given their individu-
ally moderate sensitivity and low specificity. Additional
long-term prospective studies with serial radiographic and
clinical follow-up, ideally with pathologic correlation,
are needed to better understand the clinical significance
of these techniques and how they may be combined to
optimally characterize intracranial atherosclerosis and
predict medical treatment failure, because intracranial
atherosclerosis has an annual rate of recurrent stroke
that is three times the average of other stroke etiologies
(13-18 versus 5 %) and IVWM research suggests it
may be even higher in the subgroup of patients with
enhancing plaque [48, 50, 51].

Intracranial aneurysm (Fig. 2)

IVWM has been used to identify ruptured intracranial
aneurysms (IA). An early study showed that in 5 cases of
subarachnoid hemorrhage, the culprit IA consistently
demonstrated wall enhancement at the site of rupture
[52]. Several of the IAs also demonstrated pre-contrast T1
shortening consistent with intramural hematoma. A larger
study of 117 patients, with 61 ruptured and 83 unruptured
IAs, used an MSDE 3D pre- and post-contrast protocol
that detected “strong/faint enhancement” in 73.8/24.6 %
of the ruptured IAs and only 4.8/13.3 % of the unruptured
IAs [53]. These results suggest that IA wall enhancement
on 3D T1- or PD-weighted post-contrast IVWM could
serve as a marker for aneurysm rupture in the 12—
20 % of subarachnoid hemorrhage patients found to
have multiple IAs, although further investigation is
necessary considering that early studies have indicated
that unstable unruptured aneurysms may also show
wall enhancement [54, 55].

Unruptured intracranial aneurysms (IAs) are a rela-
tively common imaging finding, incidentally found in up
to 2 % of luminal imaging studies [56]. Given the histor-
ical difficulty in risk stratifying unruptured IAs, IVWM
has been used to identify the underlying arterial wall in-
flammation that is hypothesized to be the driving force
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Fig. 2 a 3D axial T1-weighted image showing a large internal carotid artery unruptured aneurysm (white arrow). b 3D axial T1-weighted post-contrast
image showing enhancement of the aneurysm wall, concerning for active inflammation and instability. ¢ 3D axial T1-weighted post-contrast image
after placement of a flow-diverting stent, which has not yet occluded the aneurysm, but has created a small area of enhancement remote
from the aneurysm (white arrow), that has been reported after flow-diverting stent placement presumed to be related to local inflammation
or thrombosis. d, e A second patient who presented with thunderclap headache and was found to have an anterior communicating artery
aneurysm (d, white arrow, digital subtraction angiogram, lateral projection), which had ruptured and caused subarachnoid hemorrhage (e, white arrow,
CT noncontrast, axial). f 3D axial T1-weighted post-contrast image showing enhancement of the aneurysm wall, consistent with recent rupture

of IA pathogenesis and, potentially, rupture [57]. The
first IVWM study of unruptured IAs imaged 14 patients
with saccular IAs using 2D sequences on a 1.5T MRI
and found that evaluating IA wall thickness and struc-
ture was easier on T1-weighted than T2-weighted se-
quences [58]. A study of 35 pre-surgical unruptured IAs
predicted wall thickness using a combination of a 3D T1
sequence and a 3D steady-state free procession (SSFP)
gradient echo sequence, to retain aspects of T2-
weighting for contrast generation with spinal fluid [59].

The IVWM prediction agreed with surgical findings in
78 % of cases. The most common reason for an inaccurate
pre-surgical IVWM was thrombus within the aneurysm or
previous surgical instrumentation [59]. What remains un-
known, and of crucial importance, is the ability of VWM
to predict future risk of IA rupture based on imaging
characteristics such as wall thickness or enhancement. A
retrospective study described IA wall enhancement be-
tween 31 “unstable” IAs (ruptured, symptomatic, or
undergoing morphological modification) and 77 “stable”
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IAs (incidental and nonevolving) [60]. Using a 3T MRI
with 3D T1 pre- and post-contrast imaging, wall enhance-
ment was found in 87 % of unstable and only 29 % of the
stable IAs.

Several studies have examined IVWM findings after
endovascular treatment of IAs. Using standard MRI se-
quences, it has been identified that IA wall enhancement
is common, occurring in 19-66 % of patients treated with
endovascular coiling or flow-diversion stents [61-63]. Pro-
cedural factors, such as the density of coil packing or coil
material and [A-specific characteristics, such as IA size or
location, influenced the incidence of wall enhancement,
but the MRI findings did not predict IA occlusion success,
procedural complications, or post-procedure morbidity
such as IA rupture. One case report used IVWM to
demonstrate thrombosis of an IA treated with a flow-
diversion stent, [64] but otherwise IVWM has not been
utilized to study the pathophysiology of IA occlusion
following endovascular treatment.

A recently published study examined 11 patients with
subarachnoid hemorrhage who had negative catheter an-
giograms and found that 4/11 had vessel wall enhance-
ment on [IVWM near possible sites of IA rupture, raising
the possibility of ruptured or thrombosed IAs that may
have been missed on luminal imaging modalities [65].
This represents an important future research direction
for IVWM studies of patients with non-traumatic sub-
arachnoid hemorrhage who have a negative initial cath-
eter angiogram, which is 10-20 % of patients [66, 67].
The yield of repeat catheter angiography is low in this
population and IVWM may allow the identification of
the causative pathology and lead to management strategies
that reduce future morbidity [68].

Vasculitis (Fig. 3)

Vasculitis, the result of an immune system-mediated at-
tack on the arterial vessel wall, [69, 70] compromises mural
integrity and leads to contrast uptake [71]. While there are
numerous etiologies for intracranial vasculitis, which have
different pathophysiology and temporal courses, the end
result of vascular mural inflammation is consistent. Given
that IVWM is particularly sensitive to vessel wall enhance-
ment and that other diagnostic tests such as catheter
angiogram or cerebrospinal fluid analysis are often incon-
clusive and lead to invasive brain biopsy, researchers have
pursued IVWM in vasculitis. Early research demonstrated
the high prevalence of vessel wall enhancement and wall
thickening, reported in 23/27 and 25/27 patients in one
series [72]. The first 3T study used 2D sequences and
identified the concentric pattern of wall enhancement
seen in vasculitis, as compared to the eccentric enhance-
ment seen in atherosclerosis [46]. Although reversible
cerebral vasospasm syndrome (RCVS) often resembles
cerebral vasculitis on luminal imaging modalities such as
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MRA or DSA [73], RCVS should exhibit very subtle or
no vessel wall enhancement on IVWM as compared to
vasculitis [74]. The concentric enhancement pattern of
vasculitis has been replicated in subsequent studies
[75], but further research is still warranted to verify
this finding in a larger cohort with biopsy-proven
cerebral vasculitis.

Research has identified more intense enhancement in
vasculitis patients than atherosclerosis patients, which
has been investigated as a therapeutic efficacy marker
[76]. Case reports with longitudinal data have shown im-
provement of wall enhancement after treatment with
immunosuppressive medications [77, 78], but in a study
of 4 vasculitis patients there was a decrease in the inten-
sity of enhancement with immunosuppression for 2/4
patients, while in the other 2 the enhancement persisted
two months after the index scan despite clinical im-
provement [76]. Another longitudinal study, using 2D
techniques with 3T MRI, showed that on baseline im-
aging 9/13 vasculitis patients had smooth concentric
wall enhancement with wall thickening, 3/13 had eccen-
tric wall enhancement with wall thickening and 1/13
had no identifiable vessel wall abnormality [75]. Follow-
up imaging showed variable amounts of improvement in
the enhancement after treatment, with some patients
continuing to enhance after a year of follow-up despite
clinical improvement, highlighting the lack of consistency
in follow-up imaging IVWM findings for vasculitis pa-
tients. Nonetheless, IVWM’s potential role as a marker
of treatment response should continue to be investi-
gated given the lack of randomized clinical trials for
vasculitis treatment and the heterogeneity of disease
activity, patient response, and high rate of adverse ef-
fects associated with treatment and uncertain necessary
duration of treatment.

Intracranial dissection (Fig. 3)

Arterial vessel wall dissection can be difficult to differenti-
ate from atherosclerotic stenosis/occlusion on conven-
tional luminal imaging modalities [79]. T1-weighted spin
echo and gradient echo MRI sequences have long been
used to identify the often crescentic intramural hematoma
associated with dissection in the aorta, extracranial carotid
and extracranial vertebral arteries [80—84]. Similar findings
have been described in intracranial vessels [85—88], but
inadequate resolution was a significant limitation for the
diminutive intracranial vasculature [79]. Sub-millimeter
resolution and suppression of intraluminal blood signal on
3T 3D IVWM allows detection of intracranial intramural
hematomas and more detailed visualization of secondary
features of dissection such as intimal flaps in the vessel
lumen, the morphology of the false lumen, or the contours
of a dissecting pseudoaneurysm [89].
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patent lumen (thick arrow)

Fig. 3 a 3D axial T1-weighted post-contrast image showing the “tram track” appearance (white arrow) of a peripheral MCA branch with concentric
enhancement from presumed cerebral vasculitis due to inflammatory amyloid angiopathy with adjacent leptomeningeal enhancement from recen
superficial siderosis. b Higher magnification of the same patient showing the tram track appearance of concentric enhancement. ¢ 3D axial T1-weighted
post-contrast image in a second patient with bacterial meningitis and associated vasculitis, showing the concentric vessel wall enhancement in
both terminal internal carotid artery segments (white arrows), which extends along the left middle cerebral artery vessel. d Lateral digital subtraction
angiography showing a basilar artery dissection and near occlusion (minimal distal flow was seen on delayed imaging-not shown) (white arrow). e Axial
diffusion-weighted image showing a pontine ischemic stroke (white arrow) which resulted from the dissection. f 3D axial T1-weighted image, proximal
to occlusion, showing eccentric wall thickening with T1 hyperintense signal (short white arrow) representing arterial dissection, with the remaining

J

The vertebral arteries are prone to intracranial dissec-
tion, but their tortuous course, natural variation in cali-
ber and small size make it difficult to reliably discern
pathologic findings from normal variations or adjacent
structures such as bone or venous plexuses [90]. Al-
though studies have favorably compared IVWM of

intracranial vertebral artery dissection to other se-
quences [9, 91, 92] such as TOF MRA and other 3D
techniques that do not suppress blood signal like spoiled
gradient-recalled (SPGR), only one study attempted to
show statistical superiority for the IVWM sequences [8].
In that study, which used a 1.5T MRI and included 18
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patients with vertebral artery dissection and 12 controls,
a 3D VRFA technique was statistically superior to SPGR
in detecting the false lumen of the dissected artery [8].

Less has been published concerning IVWM and intra-
cranial anterior circulation dissection. A case report de-
scribed how IVWM led to stent placement in a patient
with middle cerebral artery dissection and high-grade
stenosis [93]. Other case reports have reported success-
ful identification of middle and anterior cerebral artery
dissection [94, 95]. None of these studies included a
control group or reported rates of false negative IVWM
findings, which does not provide support for the routine
use of IVWM in patients suspected to have dissection.
However, for patients who are strongly suspected of hav-
ing intracranial dissection, such as trauma patients with
cryptogenic ischemic stroke, but have negative CTA or
MRA imaging, the definitive test is a digital subtraction
angiogram, which carries a nontrivial risk of iatrogenic
stroke or other complications [96]. Taking that into ac-
count, IVWM could be useful in this subset of patients
who have had negative noninvasive screening for dissec-
tion, but a high clinical suspicion of dissection. IVWM
may also be advantageous over other MRI techniques
for the detection of subadventitial dissections, which
may be occult on luminal imaging techniques if there is
no associated luminal stenosis.

Comparisons to histopathology

Pathological studies comparing excised IAs to IVWM
have generally shown excellent agreement between in-
vivo and microscopic comparisons. Using rabbits with
iatrogenic aneurysms, a study showed IA wall thickness
was reliable at the dome of IA, but not the neck and at
resolutions greater than one voxel, which modern scan-
ning techniques are reducing to less than 0.5 mm [97].
Comparing 7T MRI on 2 patients with unruptured IAs
prior to surgical clipping with histologic measurements
on an ex vivo IVWM found excellent correlation for wall
thickness measurements [98]. However, the study did
not report other morphologic data such as wall enhance-
ment or intramural pathology. If possible, future IVWM
IA studies should include comparisons to surgical path-
ology, which would appear feasible given the number of
patients who undergo clipping or other excision proce-
dures, but is complicated by the difficulty of performing
pathology on friable arterial vessel walls, often measur-
ing <0.2 mm [99].

In comparison to the atherosclerosis pathology studies
performed for IVWM of the carotid arteries, where ca-
rotid endarterectomy provides convenient tissue samples
[100, 101], the large and medium diameter intracranial
vessels, the major sites of atherosclerosis, are not typically
available for pathology prior to autopsy.'* As a result, the
majority of studies comparing I[VWM to intracranial
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atherosclerotic histopathology have used post-mortem
MR acquisition. Two studies used cadaver intracranial
vessel specimens to compare histopathologic findings to
7T IVWM [102, 103]. In those studies, IVWM was accur-
ate at identifying increased wall thickness, areas of foamy
macrophages, collagen deposition, luminal stenosis, or
outer wall protrusion. However, the conclusions that can
be drawn from post-mortem imaging, in the absence of
blood or surrounding brain parenchyma and CSF, are not
definitive. In one case report, the authors performed 3T
IVWM of a patient with diffuse intracranial atheroscler-
osis and ischemic strokes shortly before they died of pneu-
monia and sepsis [104]. The plaque was not thought to be
symptomatic, but had fibrofatty and calcific components
on IVWM that corresponded to lipid and loose matrix,
fibrous tissue and calcium on histopathology [104]. Intra-
plaque hemorrhage was not present in that patient’s
sample, so comparison was not possible.

Challenges with using IVWM for differentiating
intracranial pathology (Fig. 4)

Although distinctive IVWM patterns have been de-
scribed, the most important factor in using IVWM for
reliable differentiation of intracranial pathology is inter-
preting it in conjunction with clinical information, as no
single IVWM imaging finding has sufficiently accurate
predictive ability. For example, concentric wall enhance-
ment, usually categorized as continuous circumferential
enhancement with the width of the thinnest enhance-
ment being 250 % of the thickest segment, can be com-
pared to eccentric enhancement, categorized as either
clearly limited to one side of the vessel wall or the thin-
nest part of the wall enhancement being <50 % of the
thickest point. Research shows that eccentric wall en-
hancement is present more often in intracranial athero-
sclerotic lesions than in autoimmune or infectious
vasculitis [17]. However, concentric wall enhancement
IVWM has also been reported in atherosclerotic stroke,
RCVS, drug-induced vasculopathy, Graves disease and
after both arterial thrombolysis and mechanical thromb-
ectomy [20, 17, 72, 75, 105-107].

An example of how clinical information would help
inform the utility of IVWM would be moyamoya dis-
ease, which would be expected to be more common in
Asian patients with few vascular risk factors [108].
Angiographic imaging findings of moyamoya disease
have been described as severely narrowed or occluded
arteries of the proximal anterior circulation with ex-
tensive collateralization. Moyamoya disease can have
similar IVWM findings to vasculitis such as mild con-
centric enhancement, but confined to the locations
favored by the disease — distal ICA and the M1/A1
segments; or moyamoya can display stenosis alone
without enhancement [7, 109]. Additional findings
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Fig. 4 a 3D axial T1-weighted post-contrast image showing diffuse vessel wall and luminal enhancement (white arrow) of the right M1 segment
in a patient with left-sided weakness, sensory loss and neglect. b 3D axial T2-weighted image of the same section of the right M1 segment with
hyperintense signal in the vessel lumen, consistent with occlusive thrombus from recently diagnosed atrial fibrillation, resulting in a large right MCA
territory ischemic stroke (dotted white arrow). ¢ Anterior-posterior digital subtraction angiogram in a second patient who presented with post-coital
headache and was found to have multifocal luminal narrowing in the bilateral M2 branches (dotted and solid white arrows). d Axial diffusion-weighted
image showing a right hemisphere ischemic stroke in the same patient. e 3D axial T1-weighted post-contrast image showing the absence of vessel
wall enhancement at the M2 segments corresponding to the narrowing seen on the angiogram in image (c), consistent with reversible
cerebral vasoconstriction syndrome, which should result in very subtle or no enhancement of the vessel wall at sites of vasospastic narrowing

include absence of wall thickening, collateralization
and homogenous signal intensity of the arterial wall
[110]. Other imaging features more common in moy-
moya disease include lack of eccentric lesions and
focal enhancement, which help enable differentiation
of moyamoya disease from intracranial atherosclerosis
and other inflammatory etiologies [46, 109].

Imaging features of intracranial dissection, although
exhibiting a pattern of eccentric wall thickening and
intimal flap enhancement appearing similar to athero-
sclerosis, additionally often include crescentic mural T1
pre-contrast hyperintensity representing methemoglobin
[46], which is less common and more superficial in
intracranial atherosclerotic with intraplaque hemorrhage.
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IVWM has also been used to differentiate vertebral and
basilar artery hypoplasias from atherosclerosis based on
the lack of wall thickening at a stenosis seen in hypopla-
sia [111, 112]. This may help predict the natural history
of such lesions and inform the need for interventional
angioplasty in patients with recurrent stroke despite
maximal medical therapy.

Multicontrast IVWM, combining T1- with T2-weighted
and other sequences, may also prove useful in differenti-
ation of atherosclerosis, RCVS and vasculitis; diagnoses
that can require costly or invasive workups [17, 74, 75].
The multicontrast approach will help to minimize the reli-
ance on vessel wall enhancement for pathologic differenti-
ation, which varies in duration in most published research
and does not necessarily correlate with disease activity
[75]. Indeed, a case report of radiation-induced vasculopa-
thy described persistent IVWM concentric enhancement
2 years following the radiation exposure [113]. Using a
multicontrast approach, future researchers can also un-
ravel the natural history of the different intracranial path-
ologies seen on IVWM and ultimately develop protocols
with sequences capable of reliably differentiating a diverse
spectrum of intracranial pathology.

Conclusion

IVWM is not currently in wide clinical use, but the con-
ditions for this transition are in place. 2D black blood
IVWM techniques are readily available on all MRIs and
can be performed at high resolution on 3T systems. All
major MRI manufacturers have a 3D VRFA sequence
that can be used at 3T, available as either a research or
product sequence depending on the scanner make and
model, allowing for black blood intracranial imaging
with the requisite ability to construct multiplanar images
with isotropic sub-millimeter resolution. At a minimum
a TOF MRA and T1- or PD-weighted sequence with
pre- and post-contrast imaging is required for IVWM,
although additional information can be obtained by in-
cluding a T2-weighted sequence and, in certain clinical
scenarios, a 3D T1-weighted gradient echo sequence
optimized for the detection of mural hemorrhage such
as MP-RAGE. Overall scan time can be less than 30 min
and incorporated into the billing format of a conven-
tional MRA with contrast. While the current literature
does not support conclusive delineation of intracranial
pathology, IVWM allows radiologists to provide clinicians
with important insights given the challenging clinical sce-
narios where IVWM is indicated, such as differentiating
between vasculitis, RCVS and atherosclerosis.

Future research will clarify if the unique morphological
findings seen on IVWM, such as unruptured IA en-
hancement or atherosclerotic plaque fibrous cap rupture,
can predict future risk of morbidity and mortality from
aneurysm rupture or ischemic stroke. There are ongoing
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prospective longitudinal studies that will begin to an-
swer these questions and others, such as the ability of
these morphological features to identify patients who
would benefit from different management strategies. In
this regard, IVWM has tremendous future potential to
identify patients for clinical trials and as a surrogate
biomarker outcome.
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